Методические рекомендации по проведению лекционных занятий с применением информационных технологий

Новое образование » Теоретические и методические аспекты изучения темы "Интегральное исчисление функции нескольких переменных" » Методические рекомендации по проведению лекционных занятий с применением информационных технологий

Страница 10

6. Уравнение связи ЦСК с ПДСК имеет вид: . Такая система координат называется цилиндрической, т.к. одна из ее координатных поверхностей является цилиндром.

7. Координатные поверхности в ЦСК:

- цилиндры, - полуплоскости, - плоскости.

8. Функциональный определитель в ЦСК имеет вид:

, [3].

Сферическая система координат

1.Векторное поле в данном случае задается

где , , .

2.ССК организована в пространстве .

3.Уравнение связи ССК с ПДСК имеет вид: .

4.Координатные поверхности в ЦСК:

- сфера, - круговой конус, - полуплоскость.

5.Функциональный определитель в ССК имеет вид:

,

[3].

Замена переменных в тройном интеграле

1.Пусть непрерывна в замкнутой области с кусочно-гладкой границей.

2.Пусть векторное поле осуществляет преобразование пространства

, в котором содержится в , а содержится в и - кусочно-гладкая граница одного поля, - другого.

3.Пусть области и - ограниченные области, т.е. они будут измеримы по Жордано – кубируемы (имеют объемы).

4.При всех указанных условиях будет справедлива формула:

.

Доказательство:

1.Разобьем область на подобласти кусочно-гладкими поверхностями .

Страницы: 5 6 7 8 9 10 11 12 13 14 15

Новые статьи:

Общая характеристика существующих методов обучения учащихся с умеренной умственной отсталостью
В данном параграфе раскрываются понятия «образование», «обучение», «воспитание», «коррекционное обучение», «коррекционное воспитание» и «коррекционное развитие», также рассматриваются методы формирования вербальных средств общения в ситуации делового взаимодействия и методы коммуникативного подхода ...

Общечеловеческие потребности. Понятие этнокультурной потребности
Все высшие духовные потребности человека — в познании, самоутверждении, самовыражении, безопасности, самоопределении, самоактуализации — это стремления к развитию, самоусовершенствованию Чтобы человек мог удовлетворить свои потребности, необходимо создать ему соответствующие условия: свободу волепр ...

Биологические особенности яровой пшеницы
Мягкая яровая пшеница относится к семейству мятликовых и входит в состав первой группы зерновых хлебов. Мягкая яровая пшеница представляет собой однолетнее травянистое растение высотой 0,5-1,5 м, состоящее из корневой системы, стебля - соломины, листьев и соцветия - колоса. Пшеница имеет мочковатую ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru