Методические рекомендации по проведению лекционных занятий с применением информационных технологий

Новое образование » Теоретические и методические аспекты изучения темы "Интегральное исчисление функции нескольких переменных" » Методические рекомендации по проведению лекционных занятий с применением информационных технологий

Страница 10

6. Уравнение связи ЦСК с ПДСК имеет вид: . Такая система координат называется цилиндрической, т.к. одна из ее координатных поверхностей является цилиндром.

7. Координатные поверхности в ЦСК:

- цилиндры, - полуплоскости, - плоскости.

8. Функциональный определитель в ЦСК имеет вид:

, [3].

Сферическая система координат

1.Векторное поле в данном случае задается

где , , .

2.ССК организована в пространстве .

3.Уравнение связи ССК с ПДСК имеет вид: .

4.Координатные поверхности в ЦСК:

- сфера, - круговой конус, - полуплоскость.

5.Функциональный определитель в ССК имеет вид:

,

[3].

Замена переменных в тройном интеграле

1.Пусть непрерывна в замкнутой области с кусочно-гладкой границей.

2.Пусть векторное поле осуществляет преобразование пространства

, в котором содержится в , а содержится в и - кусочно-гладкая граница одного поля, - другого.

3.Пусть области и - ограниченные области, т.е. они будут измеримы по Жордано – кубируемы (имеют объемы).

4.При всех указанных условиях будет справедлива формула:

.

Доказательство:

1.Разобьем область на подобласти кусочно-гладкими поверхностями .

Страницы: 5 6 7 8 9 10 11 12 13 14 15

Новые статьи:

Вычисление тройного интеграла по любой области
Общий случаи интеграла, распространенного на тело любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция определена в области ,то вместо нее следует лишь ввести, функцию , определенную в объемлющем прямоугольном параллелепипеде , полагая Этим путем и получаются все ...

Необходимость формирования культуры межнационального общения у учеников в современной школе
В последнее время все чаще слышатся слова «этносы», «народы», «терпимость», «толерантность», «межнациональное общение». Межэтнические отношения стали важнейшим элементом социальной и политической реальности. Особенность России состоит в том, что ее население составляют более ста коренных народов, п ...

Семья и её влияние на развитие детей дошкольного возраста
Семья выступает как первый воспитательный институт, связь с которым человек ощущает на протяжении всей своей жизни. Именно в семье закладываются основы нравственности человека, формируются нормы поведения, раскрываются внутренний мир и индивидуальные качества личности. Семья способствует самоутверж ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru