Методические рекомендации по проведению лекционных занятий с применением информационных технологий

Новое образование » Теоретические и методические аспекты изучения темы "Интегральное исчисление функции нескольких переменных" » Методические рекомендации по проведению лекционных занятий с применением информационных технологий

Страница 10

6. Уравнение связи ЦСК с ПДСК имеет вид: . Такая система координат называется цилиндрической, т.к. одна из ее координатных поверхностей является цилиндром.

7. Координатные поверхности в ЦСК:

- цилиндры, - полуплоскости, - плоскости.

8. Функциональный определитель в ЦСК имеет вид:

, [3].

Сферическая система координат

1.Векторное поле в данном случае задается

где , , .

2.ССК организована в пространстве .

3.Уравнение связи ССК с ПДСК имеет вид: .

4.Координатные поверхности в ЦСК:

- сфера, - круговой конус, - полуплоскость.

5.Функциональный определитель в ССК имеет вид:

,

[3].

Замена переменных в тройном интеграле

1.Пусть непрерывна в замкнутой области с кусочно-гладкой границей.

2.Пусть векторное поле осуществляет преобразование пространства

, в котором содержится в , а содержится в и - кусочно-гладкая граница одного поля, - другого.

3.Пусть области и - ограниченные области, т.е. они будут измеримы по Жордано – кубируемы (имеют объемы).

4.При всех указанных условиях будет справедлива формула:

.

Доказательство:

1.Разобьем область на подобласти кусочно-гладкими поверхностями .

Страницы: 5 6 7 8 9 10 11 12 13 14 15

Новые статьи:

Педагогическая диагностика и контроль
В последние годы в отечественной и зарубежной педагогике все чаще говорится о необходимости мониторинга педагогической деятельности учителя как целостной системы ее контроля, коррекции и управления на основе понимания объективных закономерностей и прогностично заданных целей. Мониторинг педагогичес ...

Объекты социально-педагогической деятельности
Активность субъекта всегда направленная на конкретный объект. В последнее время выделены категории граждан, которым оказывается социально-педагогическая помощь: · дети-инвалиды, · дети-сироты, · дети-правонарушители, · дети группы риска, · та категория подростков, которая требует помощи в процессе ...

Классификация педагогических технологий
В наиболее обобщенном виде все известные в педагогической науке и практике технологии систематизировал Г.К. Селевко. В основу объединения технологий в классы положены наиболее существенные признаки: уровень применения, философская основа, методологический подход, ведущий фактор развития личности, н ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru