5.Обозначим через
диаметр
, максимальное расстояние между точками, а
- наибольший из всех диаметров частичной области
,
,
-ранг разбиения области
на частичные области
.
6.Выберем в каждой частичной области
произвольную точку
.
7.Составим интегральную сумму вида:
,
где
- мера объема (мера Жордано).
Определение: Если при
, интегральная сумма стремиться к конечному пределу, причем он не зависит от способа разбиения тела
на подобласти
и выбора точек
, то функция
называется интегрируемой по области
, а сам предел называется тройным интегралом от функции
по области
и обозначается
[2].
Свойства тройного интеграла
1. Если функция
интегрируема по области
, то она ограничена на указанной области.
2. Если функция
непрерывна по области
, то она интегрируема на указанной области.
3. Если область
разбита на две, то тройной интеграл равен сумме тройных интегралов, т.е. если
, то
.
Существование интегралов в правой части обеспечивает существование интеграла в левой части и наоборот.
4. Если
- некоторое действительное число (
), то константу можно выносить из под знака интеграла
. Если f - интегрируема, то и функция
интегрируема, если
. Из существования интеграла в левой части вытекает существование интеграла в правой части.
Преобразование пространств и
криволинейные координаты
Идеи, развитые в связи с преобразованием плоских областей, естественно переносятся и на случай пространственных областей. Пусть имеем пространство, отнесенное к системе прямоугольных координат , и другое пространство с системой координат . Рассмотрим две замкнутые области и в этих пространствах огр ...
Задача о вычислении массы тела
Пусть дано некоторое тело (V), заполненное массами, и в каждой его точке M(x, y, z) известна плотность распределение ρ = ρ(M)=ρ(x, y, z) этих масс. Требуется определить всю массу m тела. Для решения этой задачи разложим тело (V) на ряд частей: (V1), (V2), … , (Vn) и выберем в предела ...
Успешный опыт реализации схем взаимодействия
инновационных компаний и вузов в развивающихся странах
В 2003 г. на XVI съезде Коммунистической партии Китая была утверждена программа социально-экономического развития страны до 2020 г., нацеленная на создание базы, обеспечивающей к 2050 г. коренную модернизацию экономики Китая, превращение его в богатое, демократическое и цивилизованное государство. ...