Методические рекомендации по проведению лекционных занятий с применением информационных технологий

Новое образование » Теоретические и методические аспекты изучения темы "Интегральное исчисление функции нескольких переменных" » Методические рекомендации по проведению лекционных занятий с применением информационных технологий

Страница 6

5.Обозначим через диаметр , максимальное расстояние между точками, а - наибольший из всех диаметров частичной области , , -ранг разбиения области на частичные области .

6.Выберем в каждой частичной области произвольную точку .

7.Составим интегральную сумму вида:

,

где - мера объема (мера Жордано).

Определение: Если при , интегральная сумма стремиться к конечному пределу, причем он не зависит от способа разбиения тела на подобласти и выбора точек , то функция называется интегрируемой по области , а сам предел называется тройным интегралом от функции по области и обозначается

[2].

Свойства тройного интеграла

1. Если функция интегрируема по области , то она ограничена на указанной области.

2. Если функция непрерывна по области , то она интегрируема на указанной области.

3. Если область разбита на две, то тройной интеграл равен сумме тройных интегралов, т.е. если , то

.

Существование интегралов в правой части обеспечивает существование интеграла в левой части и наоборот.

4. Если - некоторое действительное число (), то константу можно выносить из под знака интеграла . Если f - интегрируема, то и функция интегрируема, если . Из существования интеграла в левой части вытекает существование интеграла в правой части.

Страницы: 1 2 3 4 5 6 7 8 9 10 11

Новые статьи:

Преобразование пространств и криволинейные координаты
Идеи, развитые в связи с преобразованием плоских областей, естественно переносятся и на случай пространственных областей. Пусть имеем пространство, отнесенное к системе прямоугольных координат , и другое пространство с системой координат . Рассмотрим две замкнутые области и в этих пространствах огр ...

Задача о вычислении массы тела
Пусть дано некоторое тело (V), заполненное массами, и в каждой его точке M(x, y, z) известна плотность распределение ρ = ρ(M)=ρ(x, y, z) этих масс. Требуется определить всю массу m тела. Для решения этой задачи разложим тело (V) на ряд частей: (V1), (V2), … , (Vn) и выберем в предела ...

Успешный опыт реализации схем взаимодействия инновационных компаний и вузов в развивающихся странах
В 2003 г. на XVI съезде Коммунистической партии Китая была утверждена программа социально-экономического развития страны до 2020 г., нацеленная на создание базы, обеспечивающей к 2050 г. коренную модернизацию экономики Китая, превращение его в богатое, демократическое и цивилизованное государство. ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru