![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
.
№5. Вычислить тройной интеграл
, если область
ограничена цилиндром
и плоскостями
,
и
[22].
Решение:
Перейдем к цилиндрическим координатам:
,
,
,
.
Уравнение цилиндра в этих координатах примет вид:
или
, т.е.
.
Следовательно, в области
координаты
,
и
изменяются так:
,
,
.
Поэтому
.
Студент у доски, остальные работают самостоятельно, в конце решения сравнивают полученный результат
№6. Вычислить
, если область
- верхняя половина шара
[17].
Решение:
Несобственные тройные интегралы
В случаях, когда область интегрирования простирается в бесконечность или подинтегральная функция перестает быть ограниченной вблизи особых точек, линий или поверхностей, несобственный тройной интеграл получается помощью дополнительного предельного перехода, исходя из собственного интеграла. Несобст ...
Педагогические условия воспитания музыкально одаренных детей старшего
дошкольного возраста
Методологической основой организации процесса музыкального воспитания в дошкольном образовательном учреждения являются теоретические труды исследователей детской одаренности и психологии музыкальных способностей Б,М, Теплова, К.В. Тарасовой, Н.А.Ветлугиной, О. П. Радыновой, Ю.Б.Алиева, А. Н. Зимино ...
Формирование общеучебных умений и навыков на уроках химии в 11 классе
В программах школ специальное внимание уделено формированию умений учащихся, выделен раздел: "Основные требования к знаниям и умениям учащихся". Сравнение перечней умений показывает их общность, и выделяют следующие (по Усовой А.В): Умения оценочной деятельности (умения объяснить и доказа ...