Координатные поверхности составляют три семейства:
а) — концентрические сферы с центром в начале координат;
б) — круговые конусы, осью которых служит ось
;
в) — полуплоскости, проходящие через ось
.
Якобиан этого преобразования:
.
Якобиан сохраняет знак плюс, за исключением упомянутых выше случаев, когда , либо
, и якобиан обращается в нуль.
3) Преобразование пространства самого в себя по формулам:
,
,
однозначно обратимо:
,
,
.
Оно называется инверсией.
4) Эллиптические координаты. Рассмотрим семейство софокусных и соосновных поверхностей второго порядка:
,
состоящее из эллипсоидов (при ), однополостных гиперболоидов (при
) и, наконец, двуполостных гиперболоидов (при
).
Через каждую точку пространства, не лежащую на координатах плоскостях, проходит по одной поверхности каждого типа. Действительно, левая часть уравнения, получаемого из :
,
имеет знак минус при , знак плюс при
, снова знак минус при
и, наконец, знак плюс при больших
. Отсюда следует, что уравнение имеет три положительных корня: один
(что отвечает эллипсоиду), второй
, (он дает однополостный гиперболоид), третий
(двуполостной гиперболоид).
Используя свойства корней написанного выше уравнения, которое мы можем рассматривать как кубическое уравнение относительно , а именно:
,
;
,
найдем:
,
,
.
Если ограничиться первым координатным октантом, то в этих формулах надлежит сохранить лишь положительные знаки. Числа можно рассматривать, как криволинейные координаты точек этого угла. Их и называют эллиптическими координатами. Три семейства координатных поверхностей - это и будут семейства эллипсоидов, однополостных и двуполостных гиперболоидов, о которых была речь выше.
Якобиан преобразования имеет вид:
Особенности управления
начальной общеобразовательной школой в условиях перехода на ФГОС
Начальная школа – самоценный, принципиально новый этап в жизни ребёнка: начинается систематическое обучение в образовательном учреждении, расширяется сфера его взаимодействия с окружающим миром, изменяется социальный статус и увеличивается потребность в самовыражении. С поступлением в школу ребёнок ...
Методические аспекты в преподавание основных
школьных редакторов
Программа PhotoShop представляет собой мощную программу по обработке растровой графики, устойчивую к действиям пользователя. Данное свойство позволяет использовать графический редактор, как в профессиональной деятельности, так и в игровом процессе. Алгоритм работы большинства функций позволяет прос ...
Изучение школьников в целях профориентации
Изучение учащихся в целях профориентации (предварительная профдиагностика), как уже было сказано выше, составляет один из важнейших составных компонентов профориентации школьников. На этом этапе следует изучить характерные особенности личности: ценностные ориентации, интересы, потребности, склоннос ...