Преобразование пространств и криволинейные координаты

Страница 3

Координатные поверхности составляют три семейства:

а) — концентрические сферы с центром в начале координат;

б) — круговые конусы, осью которых служит ось ;

в) — полуплоскости, проходящие через ось .

Якобиан этого преобразования:

.

Якобиан сохраняет знак плюс, за исключением упомянутых выше случаев, когда , либо , и якобиан обращается в нуль.

3) Преобразование пространства самого в себя по формулам:

, ,

однозначно обратимо:

, , .

Оно называется инверсией.

4) Эллиптические координаты. Рассмотрим семейство софокусных и соосновных поверхностей второго порядка:

,

состоящее из эллипсоидов (при ), однополостных гиперболоидов (при ) и, наконец, двуполостных гиперболоидов (при ).

Через каждую точку пространства, не лежащую на координатах плоскостях, проходит по одной поверхности каждого типа. Действительно, левая часть уравнения, получаемого из :

,

имеет знак минус при , знак плюс при , снова знак минус при и, наконец, знак плюс при больших . Отсюда следует, что уравнение имеет три положительных корня: один (что отвечает эллипсоиду), второй , (он дает однополостный гиперболоид), третий (двуполостной гиперболоид).

Используя свойства корней написанного выше уравнения, которое мы можем рассматривать как кубическое уравнение относительно , а именно:

,

;

,

найдем:

, ,

.

Если ограничиться первым координатным октантом, то в этих формулах надлежит сохранить лишь положительные знаки. Числа можно рассматривать, как криволинейные координаты точек этого угла. Их и называют эллиптическими координатами. Три семейства координатных поверхностей - это и будут семейства эллипсоидов, однополостных и двуполостных гиперболоидов, о которых была речь выше.

Якобиан преобразования имеет вид:

Страницы: 1 2 3 4

Новые статьи:

Об особенностях уроков литературного чтения во 2 классе
Успех урока литературного чтения зависит от того, какую задачу поставил учитель при изучении текста и как смог построить алгоритм освоения того или иного текста. В зависимости от целей и задач урока возможно проведение различных по типу уроков литературного чтения. Урок знакомства с произведением ( ...

Педагогические условия воспитания музыкально одаренных детей старшего дошкольного возраста
Методологической основой организации процесса музыкального воспитания в дошкольном образовательном учреждения являются теоретические труды исследователей детской одаренности и психологии музыкальных способностей Б,М, Теплова, К.В. Тарасовой, Н.А.Ветлугиной, О. П. Радыновой, Ю.Б.Алиева, А. Н. Зимино ...

Проблемы взаимодействия инновационных компаний и вузов
В России взаимодействие государство – наука – бизнес имеет свою специфику. Первая особенность связана с достаточно слабой финансовой самостоятельностью российских регионов и муниципалитетов (на протяжении длительного времени наблюдался дефицит регионального и местных бюджетов) и, как следствие, с о ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru