Преобразование пространств и криволинейные координаты

Страница 3

Координатные поверхности составляют три семейства:

а) — концентрические сферы с центром в начале координат;

б) — круговые конусы, осью которых служит ось ;

в) — полуплоскости, проходящие через ось .

Якобиан этого преобразования:

.

Якобиан сохраняет знак плюс, за исключением упомянутых выше случаев, когда , либо , и якобиан обращается в нуль.

3) Преобразование пространства самого в себя по формулам:

, ,

однозначно обратимо:

, , .

Оно называется инверсией.

4) Эллиптические координаты. Рассмотрим семейство софокусных и соосновных поверхностей второго порядка:

,

состоящее из эллипсоидов (при ), однополостных гиперболоидов (при ) и, наконец, двуполостных гиперболоидов (при ).

Через каждую точку пространства, не лежащую на координатах плоскостях, проходит по одной поверхности каждого типа. Действительно, левая часть уравнения, получаемого из :

,

имеет знак минус при , знак плюс при , снова знак минус при и, наконец, знак плюс при больших . Отсюда следует, что уравнение имеет три положительных корня: один (что отвечает эллипсоиду), второй , (он дает однополостный гиперболоид), третий (двуполостной гиперболоид).

Используя свойства корней написанного выше уравнения, которое мы можем рассматривать как кубическое уравнение относительно , а именно:

,

;

,

найдем:

, ,

.

Если ограничиться первым координатным октантом, то в этих формулах надлежит сохранить лишь положительные знаки. Числа можно рассматривать, как криволинейные координаты точек этого угла. Их и называют эллиптическими координатами. Три семейства координатных поверхностей - это и будут семейства эллипсоидов, однополостных и двуполостных гиперболоидов, о которых была речь выше.

Якобиан преобразования имеет вид:

Страницы: 1 2 3 4

Новые статьи:

Правописание количественных числительных
1. Числительное 4 пишется на конце с е (четыре), в творительном падеже - с ь после р (четырьмя). 2. Числительное 11 пишется с двумя н (одиннадцать). 3. В числительных от 5 до 20 и 30 ь ставится только в конце слова (пять, семь, восемь, шестнадцать, восемнадцать и т. д.), Слова седьмой, восьмой, вос ...

Морфология
Макроскопические изменения обнаруживаются при тяжелых формах умственной отсталости, а также нозологически специфических заболеваниях, проявляющихся не только патологией мозга, но и других органов и систем организма. Наиболее характерными изменениями являются малые размеры и низкая масса головного м ...

Характеристика малокомплектной школы – МОУ «Ждановская основная общеобразовательная школа» Осташковского района Тверской области
Свою историю МОУ "Ждановская основная общеобразовательная школа" ведёт с 1927 года, когда она начала действовать как начальная школа. Затем, в 1932 году, был открыт 5 класс, и из неприспособленных помещений она была переведена в новое, построенное здание волостного исполкома, в котором пр ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru