Преобразование пространств и криволинейные координаты

Страница 3

Координатные поверхности составляют три семейства:

а) — концентрические сферы с центром в начале координат;

б) — круговые конусы, осью которых служит ось ;

в) — полуплоскости, проходящие через ось .

Якобиан этого преобразования:

.

Якобиан сохраняет знак плюс, за исключением упомянутых выше случаев, когда , либо , и якобиан обращается в нуль.

3) Преобразование пространства самого в себя по формулам:

, ,

однозначно обратимо:

, , .

Оно называется инверсией.

4) Эллиптические координаты. Рассмотрим семейство софокусных и соосновных поверхностей второго порядка:

,

состоящее из эллипсоидов (при ), однополостных гиперболоидов (при ) и, наконец, двуполостных гиперболоидов (при ).

Через каждую точку пространства, не лежащую на координатах плоскостях, проходит по одной поверхности каждого типа. Действительно, левая часть уравнения, получаемого из :

,

имеет знак минус при , знак плюс при , снова знак минус при и, наконец, знак плюс при больших . Отсюда следует, что уравнение имеет три положительных корня: один (что отвечает эллипсоиду), второй , (он дает однополостный гиперболоид), третий (двуполостной гиперболоид).

Используя свойства корней написанного выше уравнения, которое мы можем рассматривать как кубическое уравнение относительно , а именно:

,

;

,

найдем:

, ,

.

Если ограничиться первым координатным октантом, то в этих формулах надлежит сохранить лишь положительные знаки. Числа можно рассматривать, как криволинейные координаты точек этого угла. Их и называют эллиптическими координатами. Три семейства координатных поверхностей - это и будут семейства эллипсоидов, однополостных и двуполостных гиперболоидов, о которых была речь выше.

Якобиан преобразования имеет вид:

Страницы: 1 2 3 4

Новые статьи:

Модели управления качеством
С точки зрения подходов к оценке и контролю качества остаются две модели управления качеством. Первая модель основана на непосредственном контроле знаний обучаемых. Во второй модели методической основой для управления качеством являются международные стандарты серии ISO 9000. Тестирование знаний пу ...

Условия и принципы реализации непрерывного образования
Современная система образования России испытывает серьезное детерминирующее воздействие со стороны коренных структурных изменений рынка труда. В регионах идут мощные процессы интеграции и реструктуризации экономики, формирующие новые социальные требования, предъявляемые к образованию личностью, общ ...

Основная гимнастика как средство и метод физического воспитания ребенка
Гимнастика (от греч. «гимнос» — обнаженный) — система специально подобранных физических упражнений и научно разработанных методических положений, направленных на решение задач всестороннего физического развития и оздоровления ребенка. Она предполагает оздоровление и всестороннюю физическую подготов ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru