где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки
. Суммируя, для проекций полной силы
притяжения на оси координат получим


Аналогично определяется и потенциал нашего тела на точку:
.
Если точка
лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл
по любой из переменных
,
,
под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что
,
,
В случае же, когда точка
сама принадлежит телу
, в этой точке
, и подинтегральные функции в и вблизи нее перестают быть ограниченными.
Проблемы взаимодействия инновационных компаний и
вузов
В России взаимодействие государство – наука – бизнес имеет свою специфику. Первая особенность связана с достаточно слабой финансовой самостоятельностью российских регионов и муниципалитетов (на протяжении длительного времени наблюдался дефицит регионального и местных бюджетов) и, как следствие, с о ...
Социально-педагогические основы профессионального самоопределения
учащихся
Проблема профессионального самоопределения личности относится к числу активно разрабатываемых психолого-педагогических проблем. Многообразие различных концептуальных подходов (педагогов, психологов, социологов, методологов) в рассмотрении проблемы профессионального самоопределения вызвано не только ...
Методы и методики исследования
Следуя гипотезе нашего исследования, мы применили психодиагностические методы и методики, использовали стандартные приемы статистической обработки данных и приемы качественного анализа (дифференциацию, типологию, описание). Были использованы следующие методы: 1. биографический; 2. математическая ст ...