Несобственные тройные интегралы

Страница 2

где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки . Суммируя, для проекций полной силы притяжения на оси координат получим

Аналогично определяется и потенциал нашего тела на точку:

.

Если точка лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл по любой из переменных , , под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что

, ,

В случае же, когда точка сама принадлежит телу , в этой точке , и подинтегральные функции в и вблизи нее перестают быть ограниченными.

Страницы: 1 2 

Новые статьи:

Формы и содержание работы с семьей
Целью социально-педагогической деятельности является реализация программы комплексной поддержки. Организация социально-педагогической работы осуществляется поэтапно. На начальном этапе происходит диагностика микросоциума и воспитательного потенциала семьи. Сюда относятся материальные и бытовые усло ...

Психолого-педагогические особенности обогащения лексического запаса младших школьников
После того как ребенку исполняется годик, он пытается произносить первые в его жизни слова. Обычно дети начинают говорить в 12-15 месяцев. Это, конечно, не означает, что все у малыша получается четко и складно. Более трудные слова он пока еще не может выговаривать. Однако даже по отдельным, неправи ...

Свойства интегрируемых функций и тройных интегралов
1. Существование и величина тройного интеграла не зависят от значений, принимаемых функцией вдоль конечного числа поверхностей с объемом 0. 2. Если , то , причем из существования интеграла слева вытекает уже существование интегралов справа, и обратно. 3. Если k= const, топричем из существования инт ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru