Несобственные тройные интегралы

Страница 2

где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки . Суммируя, для проекций полной силы притяжения на оси координат получим

Аналогично определяется и потенциал нашего тела на точку:

.

Если точка лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл по любой из переменных , , под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что

, ,

В случае же, когда точка сама принадлежит телу , в этой точке , и подинтегральные функции в и вблизи нее перестают быть ограниченными.

Страницы: 1 2 

Новые статьи:

Выражение объема в криволинейных координатах
Возвращаясь к предположениям и обозначениям п° 1.1, поставим себе задачей выразить объем (ограниченного) тела в пространстве . Иным интегралом, распространенным на соответствующее тело в пространстве . Искомый объем выражается, прежде всего поверхностным интегралом второго типа:,распространенным на ...

Усвоение понятий и восприятие
Анализ концептуальной структуры географии привел к попыткам положить в основу школьного обучения овладение не только ключевыми, но и производными понятиями. Наряду с этим все больше внимания уделяется развитию умений и навыков, поскольку учащимся прививают интерес к применению исследовательских мет ...

Как написать заключение и предложить практические рекомендации
После выполненного анализа принимают окончательное решение, которое формулируют как заключение, выводы или предложения. Эта часть работы требует высокой квалификации, поскольку необходимо кратко, четко, научно выделить то новое и существенное, что является результатом исследования, дать ему исчерпы ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru