Несобственные тройные интегралы

Страница 2

где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки . Суммируя, для проекций полной силы притяжения на оси координат получим

Аналогично определяется и потенциал нашего тела на точку:

.

Если точка лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл по любой из переменных , , под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что

, ,

В случае же, когда точка сама принадлежит телу , в этой точке , и подинтегральные функции в и вблизи нее перестают быть ограниченными.

Страницы: 1 2 

Новые статьи:

Проблемы взаимодействия инновационных компаний и вузов
В России взаимодействие государство – наука – бизнес имеет свою специфику. Первая особенность связана с достаточно слабой финансовой самостоятельностью российских регионов и муниципалитетов (на протяжении длительного времени наблюдался дефицит регионального и местных бюджетов) и, как следствие, с о ...

Социально-педагогические основы профессионального самоопределения учащихся
Проблема профессионального самоопределения личности относится к числу активно разрабатываемых психолого-педагогических проблем. Многообразие различных концептуальных подходов (педагогов, психологов, социологов, методологов) в рассмотрении проблемы профессионального самоопределения вызвано не только ...

Методы и методики исследования
Следуя гипотезе нашего исследования, мы применили психодиагностические методы и методики, использовали стандартные приемы статистической обработки данных и приемы качественного анализа (дифференциацию, типологию, описание). Были использованы следующие методы: 1. биографический; 2. математическая ст ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru