где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки
. Суммируя, для проекций полной силы
притяжения на оси координат получим


Аналогично определяется и потенциал нашего тела на точку:
.
Если точка
лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл
по любой из переменных
,
,
под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что
,
,
В случае же, когда точка
сама принадлежит телу
, в этой точке
, и подинтегральные функции в и вблизи нее перестают быть ограниченными.
Формы и содержание работы с семьей
Целью социально-педагогической деятельности является реализация программы комплексной поддержки. Организация социально-педагогической работы осуществляется поэтапно. На начальном этапе происходит диагностика микросоциума и воспитательного потенциала семьи. Сюда относятся материальные и бытовые усло ...
Психолого-педагогические особенности обогащения лексического запаса младших
школьников
После того как ребенку исполняется годик, он пытается произносить первые в его жизни слова. Обычно дети начинают говорить в 12-15 месяцев. Это, конечно, не означает, что все у малыша получается четко и складно. Более трудные слова он пока еще не может выговаривать. Однако даже по отдельным, неправи ...
Свойства интегрируемых функций и тройных интегралов
1. Существование и величина тройного интеграла не зависят от значений, принимаемых функцией вдоль конечного числа поверхностей с объемом 0. 2. Если , то , причем из существования интеграла слева вытекает уже существование интегралов справа, и обратно. 3. Если k= const, топричем из существования инт ...