где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки
. Суммируя, для проекций полной силы
притяжения на оси координат получим


Аналогично определяется и потенциал нашего тела на точку:
.
Если точка
лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл
по любой из переменных
,
,
под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что
,
,
В случае же, когда точка
сама принадлежит телу
, в этой точке
, и подинтегральные функции в и вблизи нее перестают быть ограниченными.
Музыкальность и музыкальные способности
Рассмотрение музыкальных способностей неразрывно связано с анализом проблемы общих способностей человека. Специальные способности, к которым относятся способности музыкальные, становятся созидательными лишь благодаря тому, что в их структуре проявляется и усиливается действие общих способностей. А ...
Формы самостоятельной работы младших школьников на уроках литературного
чтения во 2 классе
Большая часть времени на уроке отводится чтению и работе с текстом. Некоторые учителя считают, что многократным перечитыванием текста на уроке (сначала лучшими учениками, затем «цепочкой», по колонкам, разучивание текста хором и т.п.) можно добиться совершенствования навыков чтения первоклассников. ...
Характеристика системы
образования Швейцарии
В Швейцарии образование является приоритетом. В стране примерно 1,1 млн. школьников и студентов, она занимает четвертое место в мире по числу нобелевских лауреатов. Швейцария объединяет 26 кантонов, где слились трех языка - немецкий, французский и итальянский. На первом языке говорит 65% населения, ...