Несобственные тройные интегралы

Страница 2

где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки . Суммируя, для проекций полной силы притяжения на оси координат получим

Аналогично определяется и потенциал нашего тела на точку:

.

Если точка лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл по любой из переменных , , под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что

, ,

В случае же, когда точка сама принадлежит телу , в этой точке , и подинтегральные функции в и вблизи нее перестают быть ограниченными.

Страницы: 1 2 

Новые статьи:

Ребенок и прекрасное
Маленький человек пришел в большой и сложный мир взрослых. В ярком, радостном, многоголосом и многоцветном этом мире мы должны помочь детям найти и полюбить красоту природы, поэзии, живописи, музыки. Искусство помогает ребенку приобщиться к доброму, осудить зло, почувствовать красоту окружающего ми ...

Аспекты изучения английского языка
Основываясь на данных прагмалингвистики и взяв во внимание изменившийся статус иностранного языка как средства общения и взаимопонимания в мировом сообществе, все психологические особенности обучения иностранному языку старшеклассников группируются вокруг необходимости усиления прагматических аспек ...

Роль дошкольно-образовательного учреждения в развитии ребенка
Дошкольно-образовательное учреждение, являясь первой ступенью образования, выполняет множество функций. Среди задач, стоящих перед детским садом, главной является всесторонне развитие личности ребенка. На занятиях, предусмотренных программой обучения и воспитания в детском саду, ребенок получает сп ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru