где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки
. Суммируя, для проекций полной силы
притяжения на оси координат получим


Аналогично определяется и потенциал нашего тела на точку:
.
Если точка
лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл
по любой из переменных
,
,
под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что
,
,
В случае же, когда точка
сама принадлежит телу
, в этой точке
, и подинтегральные функции в и вблизи нее перестают быть ограниченными.
Выражение объема в
криволинейных координатах
Возвращаясь к предположениям и обозначениям п° 1.1, поставим себе задачей выразить объем (ограниченного) тела в пространстве . Иным интегралом, распространенным на соответствующее тело в пространстве . Искомый объем выражается, прежде всего поверхностным интегралом второго типа:,распространенным на ...
Усвоение понятий и восприятие
Анализ концептуальной структуры географии привел к попыткам положить в основу школьного обучения овладение не только ключевыми, но и производными понятиями. Наряду с этим все больше внимания уделяется развитию умений и навыков, поскольку учащимся прививают интерес к применению исследовательских мет ...
Как написать заключение и предложить практические рекомендации
После выполненного анализа принимают окончательное решение, которое формулируют как заключение, выводы или предложения. Эта часть работы требует высокой квалификации, поскольку необходимо кратко, четко, научно выделить то новое и существенное, что является результатом исследования, дать ему исчерпы ...