где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки
. Суммируя, для проекций полной силы
притяжения на оси координат получим


Аналогично определяется и потенциал нашего тела на точку:
.
Если точка
лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл
по любой из переменных
,
,
под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что
,
,
В случае же, когда точка
сама принадлежит телу
, в этой точке
, и подинтегральные функции в и вблизи нее перестают быть ограниченными.
Нравственые воззрения и нравственное воспитание
В качестве заключения считаю необходимым обратиться к вопросам выработки у ребенка нравственных воззрений. В связи с возрастающей ролью географических исследований в решении практических задач, связанных с социальной и территориальной организацией общества, а также с экологическими проблемами, все ...
Выражение объема в
криволинейных координатах
Возвращаясь к предположениям и обозначениям п° 1.1, поставим себе задачей выразить объем (ограниченного) тела в пространстве . Иным интегралом, распространенным на соответствующее тело в пространстве . Искомый объем выражается, прежде всего поверхностным интегралом второго типа:,распространенным на ...
Методы и формы организации эстетического воспитания
дошкольников
Каждой группе задач эстетического воспитания соответствуют свои методы. Как говорилось выше, первая группа задач направлена на приобщение детей к искусству, развитие у дошкольников эстетического вкуса, понимание прекрасного. Ведущими методами для решения этих задач являются: показ, наблюдение, объя ...