Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция , представляет собой прямоугольный параллелепипед
(рис.1), проектирующийся на плоскость
в прямоугольник
.
Теорема. Если для функции существует тройной интеграл
(5)
и при каждом постоянном из
— двойной интеграл
,
то существует также повторный интеграл
, (7)
и выполняется равенство
.
доказательство: Разделим промежутки ,
,
на части с помощью точек
,
,
,
тем самым разложим параллелепипед (Т) на элементарные параллелепипеды
и одновременно прямоугольник — на элементарные прямоугольники
(где и
пробегают те же значения, что и только что).
Положив
имеем в силу 1.3, 1.7,
для всех значений из
. Фиксируя произвольное значение
, в этом промежутке, просуммируем подобные неравенства для всех значений j и k; мы получим неравенства
.
Наконец, умножим эти неравенства почленно на и просуммируем на этот раз по значку
:
.
Крайние члены представляют собой суммы Дарбу для интеграла и стремятся к нему, как к пределу, при стремлении к нулю всех разностей ,
,
. Значит, к тому же пределу стремится интегральная сумма, стоящая посредине. Этим доказано одновременно как существование интеграла, так и равенство. Если предположить еще существование простого интеграла
при любых значениях х из , у из
,то двойной интеграл в равенстве (8) можно заменить повторным и окончательно получим:
.
Таким образом, вычисление тройного интеграла приводится к последовательному вычислению трех простых интегралов. Роли переменных , в формуле (10), разумеется, могут быть произвольно переставлены.
Если , то
И здесь роли переменных можно переставлять.
В частности, для случая непрерывной функции ,очевидно, имеют место все формулы (8), (10), (11) и им подобные, получающиеся перестановкой переменных [3].
Психологические основы формирования словаря у детей раннего возраста
Речь не только служит познанию, но и является необходимым средством, оружием человеческого мышления. Человек мыслит словами, произнося их громко или про себя ( внешняя и внутренняя речь ). Вместе с тем речь и мышление – не одно и то же, потому что мышление – отражение в мозгу предметов и явлений в ...
Роль и место практических методов в разделе «Технология обработки
конструкционных материалов. Элементы машиноведения»
Одно из требований, которое определяет выбор методов и методических приемов обучения - их разнообразие. Однако разнообразие методов - не самоцель. Различные методы требуют включения в процесс усвоения различных органов чувств: слуха (объяснения, беседа), зрения (демонстрация средств наглядности, по ...
Разработка мелкоделяночного опыта и
его апробация
Полученные удобрения, по технологии указанной выше, на основе осиновой коры и сапропеля апробировали в мелкоделяночном опыте, заложенном на стационаре Красноярского государственного аграрного университета. Схема опыта включала следующие варианты: 1. Почва (без внесения удобрений) - контроль; 2. Поч ...