Вычисление тройного интеграла, распространенного на параллелепипед

Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция , представляет собой прямоугольный параллелепипед (рис.1), проектирующийся на плоскость в прямоугольник .

Теорема. Если для функции существует тройной интеграл

(5)

и при каждом постоянном из — двойной интеграл

,

то существует также повторный интеграл

, (7)

и выполняется равенство

.

доказательство: Разделим промежутки , , на части с помощью точек

,

,

,

тем самым разложим параллелепипед (Т) на элементарные параллелепипеды

и одновременно прямоугольник — на элементарные прямоугольники

(где и пробегают те же значения, что и только что).

Положив

имеем в силу 1.3, 1.7,

для всех значений из . Фиксируя произвольное значение , в этом промежутке, просуммируем подобные неравенства для всех значений j и k; мы получим неравенства

.

Наконец, умножим эти неравенства почленно на и просуммируем на этот раз по значку :

.

Крайние члены представляют собой суммы Дарбу для интеграла и стремятся к нему, как к пределу, при стремлении к нулю всех разностей , , . Значит, к тому же пределу стремится интегральная сумма, стоящая посредине. Этим доказано одновременно как существование интеграла, так и равенство. Если предположить еще существование простого интеграла

при любых значениях х из , у из ,то двойной интеграл в равенстве (8) можно заменить повторным и окончательно получим:

.

Таким образом, вычисление тройного интеграла приводится к последовательному вычислению трех простых интегралов. Роли переменных , в формуле (10), разумеется, могут быть произвольно переставлены.

Если , то

И здесь роли переменных можно переставлять.

В частности, для случая непрерывной функции ,очевидно, имеют место все формулы (8), (10), (11) и им подобные, получающиеся перестановкой переменных [3].

Новые статьи:

Характеристика связной речи и ее особенности
Каждый ребенок должен научиться содержательно, грамматически правильно, связно и последовательно излагать свои мысли. В то же время речь детей должна быть живой, непосредственной, выразительной. Связная речь неотделима от мира мыслей: связность речи - это связность мыслей. В связной речи отражается ...

Психолого-педагогические условия организации учебно-познавательной деятельности школьников
Психолого-педагогические условия организации учебно-познавательной деятельности школьников зависят от того, какую позицию учащиеся занимают в педагогической ситуации. Эти позиции могут быть: - пассивного восприятия и освоения преподносимой извне информации; - активного самостоятельного поиска, обна ...

Сущность и формы социальной поддержки алкоголезависимых семей, воспитывающих детей дошкольного возраста
Социальная поддержка - это «система мероприятий субъектов социальной работы, направленная на решение проблем лиц, находящихся в сложных жизненных обстоятельствах, путем предоставления им помощи и необходимых видов социальных услуг». Выделяют следующие наиболее распространенные виды социальной подде ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru