Вычисление тройного интеграла, распространенного на параллелепипед

Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция , представляет собой прямоугольный параллелепипед (рис.1), проектирующийся на плоскость в прямоугольник .

Теорема. Если для функции существует тройной интеграл

(5)

и при каждом постоянном из — двойной интеграл

,

то существует также повторный интеграл

, (7)

и выполняется равенство

.

доказательство: Разделим промежутки , , на части с помощью точек

,

,

,

тем самым разложим параллелепипед (Т) на элементарные параллелепипеды

и одновременно прямоугольник — на элементарные прямоугольники

(где и пробегают те же значения, что и только что).

Положив

имеем в силу 1.3, 1.7,

для всех значений из . Фиксируя произвольное значение , в этом промежутке, просуммируем подобные неравенства для всех значений j и k; мы получим неравенства

.

Наконец, умножим эти неравенства почленно на и просуммируем на этот раз по значку :

.

Крайние члены представляют собой суммы Дарбу для интеграла и стремятся к нему, как к пределу, при стремлении к нулю всех разностей , , . Значит, к тому же пределу стремится интегральная сумма, стоящая посредине. Этим доказано одновременно как существование интеграла, так и равенство. Если предположить еще существование простого интеграла

при любых значениях х из , у из ,то двойной интеграл в равенстве (8) можно заменить повторным и окончательно получим:

.

Таким образом, вычисление тройного интеграла приводится к последовательному вычислению трех простых интегралов. Роли переменных , в формуле (10), разумеется, могут быть произвольно переставлены.

Если , то

И здесь роли переменных можно переставлять.

В частности, для случая непрерывной функции ,очевидно, имеют место все формулы (8), (10), (11) и им подобные, получающиеся перестановкой переменных [3].

Новые статьи:

Изучение природного сообщества в программе «Окружающий мир» по системе Л.В.Занкова
Рассмотрим особенности изучения природных сообществ в программе «Окружающий мир» по системе Л.В.Занкова на примере сообщества леса. Особенностью данного курса является реализация интегрированного подхода к ознакомлению с окружающим миром. Познание природы осуществляется во взаимосвязи социально-нра ...

Условия ознакомления младших школьников с элементами графической грамотности
Процесс ознакомления младших школьников с элементами графической грамотности очень сложен и захватывает различные сферы умственной деятельности школьника. Как отмечала И.Н. Садовникова, для формирования графической грамотности необходимо, чтобы обучающийся был подготовлен к ознакомлению элементов г ...

Ребенок и прекрасное
Маленький человек пришел в большой и сложный мир взрослых. В ярком, радостном, многоголосом и многоцветном этом мире мы должны помочь детям найти и полюбить красоту природы, поэзии, живописи, музыки. Искусство помогает ребенку приобщиться к доброму, осудить зло, почувствовать красоту окружающего ми ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru