Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция
, представляет собой прямоугольный параллелепипед
(рис.1), проектирующийся на плоскость
в прямоугольник
.
Теорема. Если для функции
существует тройной интеграл
(5)
и при каждом постоянном
из
— двойной интеграл
,
то существует также повторный интеграл
, (7)
и выполняется равенство
![]()
.
доказательство: Разделим промежутки
,
,
на части с помощью точек
,
,
,
тем самым разложим параллелепипед (Т) на элементарные параллелепипеды
и одновременно прямоугольник
— на элементарные прямоугольники
(где
и
пробегают те же значения, что и только что).
Положив
имеем в силу 1.3, 1.7,
для всех значений
из
. Фиксируя произвольное значение
, в этом промежутке, просуммируем подобные неравенства для всех значений j и k; мы получим неравенства
.
Наконец, умножим эти неравенства почленно на
и просуммируем на этот раз по значку
:
.
Крайние члены представляют собой суммы Дарбу для интеграла и стремятся к нему, как к пределу, при стремлении к нулю всех разностей
,
,
. Значит, к тому же пределу стремится интегральная сумма, стоящая посредине. Этим доказано одновременно как существование интеграла, так и равенство. Если предположить еще существование простого интеграла
при любых значениях х из
, у из
,то двойной интеграл в равенстве (8) можно заменить повторным и окончательно получим:
.
Таким образом, вычисление тройного интеграла приводится к последовательному вычислению трех простых интегралов. Роли переменных
, в формуле (10), разумеется, могут быть произвольно переставлены.
Если
, то
И здесь роли переменных можно переставлять.
В частности, для случая непрерывной функции
,очевидно, имеют место все формулы (8), (10), (11) и им подобные, получающиеся перестановкой переменных [3].
Что такое воспитательная система
По мнению Л.Н. Новиковой, большое значение для реализации воспитательной функции учебного заведения имеет развитие воспитательной системы, имеющей достаточно сложную структуру, включающую цели, деятельность которой обеспечивает их реализацию, среду системы и управление [5, 13, 14]. Воспитательный п ...
Анализ обследования мышления и речи детей с ЗПР
Анализ результатов обследования мышления и речи детей с нормальным развитием представлены в таблице № 2. Таблица 2 Диагностика 1 2 3 4 5 6 7 8 9 10 Общая Оценка Ильнур Г. 4 5 3 3 4 5 4 4 4 3 3,8 Айнур Г 4 4 3 3 3 4 4 4 3 3 3,5 Алеша О. 4 4 4 4 4 4 4 5 4 3 40 Влада З. 4 3 3 3 3 4 4 4 4 3 3,5 Виолетт ...
Упорядочивание внеурочного времени
Видовое разнообразие творческих объединений велико: это кружки, секции, клубы, студии, лаборатории, мастерские, научные общества учащихся, экспедиции. Многогранна и профильная направленность. Связано это прежде всего с тем, что в отличие от факультативов творческие объединения предназначены выполня ...