Вычисление тройного интеграла, распространенного на параллелепипед

Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция , представляет собой прямоугольный параллелепипед (рис.1), проектирующийся на плоскость в прямоугольник .

Теорема. Если для функции существует тройной интеграл

(5)

и при каждом постоянном из — двойной интеграл

,

то существует также повторный интеграл

, (7)

и выполняется равенство

.

доказательство: Разделим промежутки , , на части с помощью точек

,

,

,

тем самым разложим параллелепипед (Т) на элементарные параллелепипеды

и одновременно прямоугольник — на элементарные прямоугольники

(где и пробегают те же значения, что и только что).

Положив

имеем в силу 1.3, 1.7,

для всех значений из . Фиксируя произвольное значение , в этом промежутке, просуммируем подобные неравенства для всех значений j и k; мы получим неравенства

.

Наконец, умножим эти неравенства почленно на и просуммируем на этот раз по значку :

.

Крайние члены представляют собой суммы Дарбу для интеграла и стремятся к нему, как к пределу, при стремлении к нулю всех разностей , , . Значит, к тому же пределу стремится интегральная сумма, стоящая посредине. Этим доказано одновременно как существование интеграла, так и равенство. Если предположить еще существование простого интеграла

при любых значениях х из , у из ,то двойной интеграл в равенстве (8) можно заменить повторным и окончательно получим:

.

Таким образом, вычисление тройного интеграла приводится к последовательному вычислению трех простых интегралов. Роли переменных , в формуле (10), разумеется, могут быть произвольно переставлены.

Если , то

И здесь роли переменных можно переставлять.

В частности, для случая непрерывной функции ,очевидно, имеют место все формулы (8), (10), (11) и им подобные, получающиеся перестановкой переменных [3].

Новые статьи:

Психологические основы формирования словаря у детей раннего возраста
Речь не только служит познанию, но и является необходимым средством, оружием человеческого мышления. Человек мыслит словами, произнося их громко или про себя ( внешняя и внутренняя речь ). Вместе с тем речь и мышление – не одно и то же, потому что мышление – отражение в мозгу предметов и явлений в ...

Роль и место практических методов в разделе «Технология обработки конструкционных материалов. Элементы машиноведения»
Одно из требований, которое определяет выбор методов и методических приемов обучения - их разнообразие. Однако разнообразие методов - не самоцель. Различные методы требуют включения в процесс усвоения различных органов чувств: слуха (объяснения, беседа), зрения (демонстрация средств наглядности, по ...

Разработка мелкоделяночного опыта и его апробация
Полученные удобрения, по технологии указанной выше, на основе осиновой коры и сапропеля апробировали в мелкоделяночном опыте, заложенном на стационаре Красноярского государственного аграрного университета. Схема опыта включала следующие варианты: 1. Почва (без внесения удобрений) - контроль; 2. Поч ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru