Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция
, представляет собой прямоугольный параллелепипед
(рис.1), проектирующийся на плоскость
в прямоугольник
.
Теорема. Если для функции
существует тройной интеграл
(5)
и при каждом постоянном
из
— двойной интеграл
,
то существует также повторный интеграл
, (7)
и выполняется равенство
![]()
.
доказательство: Разделим промежутки
,
,
на части с помощью точек
,
,
,
тем самым разложим параллелепипед (Т) на элементарные параллелепипеды
и одновременно прямоугольник
— на элементарные прямоугольники
(где
и
пробегают те же значения, что и только что).
Положив
имеем в силу 1.3, 1.7,
для всех значений
из
. Фиксируя произвольное значение
, в этом промежутке, просуммируем подобные неравенства для всех значений j и k; мы получим неравенства
.
Наконец, умножим эти неравенства почленно на
и просуммируем на этот раз по значку
:
.
Крайние члены представляют собой суммы Дарбу для интеграла и стремятся к нему, как к пределу, при стремлении к нулю всех разностей
,
,
. Значит, к тому же пределу стремится интегральная сумма, стоящая посредине. Этим доказано одновременно как существование интеграла, так и равенство. Если предположить еще существование простого интеграла
при любых значениях х из
, у из
,то двойной интеграл в равенстве (8) можно заменить повторным и окончательно получим:
.
Таким образом, вычисление тройного интеграла приводится к последовательному вычислению трех простых интегралов. Роли переменных
, в формуле (10), разумеется, могут быть произвольно переставлены.
Если
, то
И здесь роли переменных можно переставлять.
В частности, для случая непрерывной функции
,очевидно, имеют место все формулы (8), (10), (11) и им подобные, получающиеся перестановкой переменных [3].
Проведение констатирующего этапа эксперимента. Диагностика уровня
музыкальной выразительности исполнения у младших школьников
Младший школьный возраст – вершина детства. Ребенок сохраняет много детских качеств – легкомыслие, наивность, полная вера в близкого взрослого. Но он уже начинает утрачивать детскую непосредственность в поведении, у него появляется другая логика мышления. Младший школьный возраст – начало школьной ...
Особенности и закономерности развития интеллекта у детей
Изучение этого вопроса связано, прежде всего, с именем швейцарского психолога Жана Пиаже. Начиная с 20-х гг. ХХ в. он в течение 50 лет занимался теоретическими и практическими вопросами детского интеллекта. Рассмотрим факты, установленные Пиаже. Важнейшие из них: открытие эгоцентрического характера ...
Изучение личностных особенностей подростков с легкой степенью умственной
отсталости и подростков с сохранным интеллектом
Результаты исследования личностных особенностей (экстраверсии-интроверсии и нейротизма) по методике Айзенка подростков с легкой степенью умственной отсталости и подростков с сохранным интеллектом представлены на рис. 3. Рис. 3. Средне-групповые значения свойств личности подростков с легкой степенью ...