Вычисление тройного интеграла по любой области

Общий случаи интеграла, распространенного на тело любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция определена в области ,то вместо нее следует лишь ввести, функцию , определенную в объемлющем прямоугольном параллелепипеде , полагая

Этим путем и получаются все приводимые ниже формулы.

Рис. 2.

Остановимся на случаях, представляющих наибольший интерес. Пусть тело содержится между плоскостями и и каждою параллельною им плоскостью, отвечающей фиксированному значению , пересекается по некоторой фигуре, имеющей площадь; через обозначим ее проекцию на плоскость (рис. 2). Тогда

(8*)

в предположении существования тройного и двойного интегралов. Это — аналог формулы.

Пусть, далее, тело представляет собой «цилиндрический брус», ограниченный снизу и сверху, соответственно, поверхностями

проектирующимися на плоскость в некоторую фигуру , ограниченную кривой с площадью 0; с боков тело ограничено цилиндрической поверхностью с образующими, параллельными оси , и с кривой в роли направляющей. Тогда аналогично формуле имеем

при этом предполагается существование тройного интеграла и простого — внутреннего— интеграла справа.

Если область представляет собой криволинейную трапецию, ограниченную двумя кривыми (рис.14) и и прямыми , , то тело подходит под оба типа, рассмотренных выше. Заменяя двойной интеграл—то ли в формуле, то ли в формуле —повторным, получим

.

Эта формула обобщает формулу.

Как и в простейшем случае, который был рассмотрен в предыдущем п°, и здесь непрерывность функции обеспечивает приложимость всех формул и им подобных, получающихся из них перестановкой переменных .

Рис. 3.

Новые статьи:

Особенности профильного обучения в средних общеобразовательных учреждениях
В русле модернизации образования в новых программах по ИЯ вводится предпрофильная подготовка в девятых классах и профильное обучение в десятых-одиннадцатых классах средней школы. Целью профильного обучения является углубленная подготовка старшеклассников к постоянно усложняющимся требованиям соврем ...

Проблема замены недостающих зрительных образов у слепых детей
Для слепого ребенка та же самая проблема недоразвития высших функций в связи с коллективной деятельностью находит конкретное выражение в совершенно других областях поведения и мышления. Если правильно разобраться в этой проблеме, то корни ее обнаружат сходство с теми корнями, которое мы рассматрива ...

Профессиональное просвещение
Важным компонентом системы профессиональной ориентации учащихся является профессиональное просвещение – сообщение школьникам сведений о различных профессиях, их значении для народного хозяйства, потребностях в кадрах, условиях труда, требованиях, предъявляемых профессией к психофизиологическим каче ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru