Общий случаи интеграла, распространенного на тело любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция
определена в области
,то вместо нее следует лишь ввести, функцию
, определенную в объемлющем
прямоугольном параллелепипеде
, полагая
Этим путем и получаются все приводимые ниже формулы.
Рис. 2.
Остановимся на случаях, представляющих наибольший интерес. Пусть тело содержится между плоскостями
и
и каждою параллельною им плоскостью, отвечающей фиксированному значению
, пересекается по некоторой фигуре, имеющей площадь; через
обозначим ее проекцию на плоскость
(рис. 2). Тогда
(8*)
в предположении существования тройного и двойного интегралов. Это — аналог формулы.
Пусть, далее, тело представляет собой «цилиндрический брус», ограниченный снизу и сверху, соответственно, поверхностями
проектирующимися на плоскость в некоторую фигуру
, ограниченную кривой
с площадью 0; с боков тело
ограничено цилиндрической поверхностью с образующими, параллельными оси
, и с кривой
в роли направляющей. Тогда аналогично формуле имеем
при этом предполагается существование тройного интеграла и простого — внутреннего— интеграла справа.
Если область представляет собой криволинейную трапецию, ограниченную двумя кривыми (рис.14)
и
и прямыми
,
, то тело
подходит под оба типа, рассмотренных выше. Заменяя двойной интеграл—то ли в формуле, то ли в формуле —повторным, получим
.
Эта формула обобщает формулу.
Как и в простейшем случае, который был рассмотрен в предыдущем п°, и здесь непрерывность функции обеспечивает приложимость всех формул и им подобных, получающихся из них перестановкой переменных
.
Рис. 3.
Эмоционально-эстетическая оценка и самооценка
Результат решения выполненного задания отмечается с точки зрения оригинальности, самостоятельности, выразительности, соответствия замысла и грамотности. Дети по подгруппам защищают свой проект, рассказывая о своем подходе в создании композиции панно по теме ''Волшебница Зима''. В качестве усиления ...
Клиника
При умственной отсталости, представляющей собой полиморфную группу патологических состояний, отмечается большое разнообразие клинико-психопатологических расстройств. Поэтому клиническая систематика УО строится на широко используемых понятиях «дифференцированная» и «недифференцированная» умственная ...
Замена переменных в тройных
интегралах
С помощью выражения объема в криволинейных координатах нетрудно установить и общую формулу замены переменных в тройных интегралах. Пуста между областями и пространств и cyществует соответствие, охарактеризованное в п0 2.1. Считая соблюденными все условия, при которых была выведена формула (26), пок ...