Вычисление тройного интеграла по любой области

Общий случаи интеграла, распространенного на тело любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция определена в области ,то вместо нее следует лишь ввести, функцию , определенную в объемлющем прямоугольном параллелепипеде , полагая

Этим путем и получаются все приводимые ниже формулы.

Рис. 2.

Остановимся на случаях, представляющих наибольший интерес. Пусть тело содержится между плоскостями и и каждою параллельною им плоскостью, отвечающей фиксированному значению , пересекается по некоторой фигуре, имеющей площадь; через обозначим ее проекцию на плоскость (рис. 2). Тогда

(8*)

в предположении существования тройного и двойного интегралов. Это — аналог формулы.

Пусть, далее, тело представляет собой «цилиндрический брус», ограниченный снизу и сверху, соответственно, поверхностями

проектирующимися на плоскость в некоторую фигуру , ограниченную кривой с площадью 0; с боков тело ограничено цилиндрической поверхностью с образующими, параллельными оси , и с кривой в роли направляющей. Тогда аналогично формуле имеем

при этом предполагается существование тройного интеграла и простого — внутреннего— интеграла справа.

Если область представляет собой криволинейную трапецию, ограниченную двумя кривыми (рис.14) и и прямыми , , то тело подходит под оба типа, рассмотренных выше. Заменяя двойной интеграл—то ли в формуле, то ли в формуле —повторным, получим

.

Эта формула обобщает формулу.

Как и в простейшем случае, который был рассмотрен в предыдущем п°, и здесь непрерывность функции обеспечивает приложимость всех формул и им подобных, получающихся из них перестановкой переменных .

Рис. 3.

Новые статьи:

Особенности воспитания любви к природе у дошкольников в различные времена года
Летом. Далеко ли можно уйти летом с малышом? Гигиенисты считают, что в шесть лет ребенок может проходить «по прямой» до двух с половиной километров. Нормы эти, безусловно, примерны. Многое ведь зависит от физического состояния, от тренированности ребенка. Нормы и весьма изменчивы. Расстояние, котор ...

Система обучения
Школа и господствующие в ней системы обучения критикуются с давних пор, однако особенно острой эта критика становится в конце XX в. на пороге нового тысячелетия. В значительной степени она обусловлена возрастающим разрывом между быстро изменяющейся под влиянием научно-технического прогресса обществ ...

Исторический экскурс в теории воспитания
Теории воспитания - это концепции, объясняющие происхождение, формирование и изменение личности, ее поведения под влиянием воспитателя. До второй половины 20 века была широко распространены теории воспитания, согласно которым личностные качества человека передаются по наследству, под влиянием услов ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru