Вычисление тройного интеграла по любой области

Общий случаи интеграла, распространенного на тело любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция определена в области ,то вместо нее следует лишь ввести, функцию , определенную в объемлющем прямоугольном параллелепипеде , полагая

Этим путем и получаются все приводимые ниже формулы.

Рис. 2.

Остановимся на случаях, представляющих наибольший интерес. Пусть тело содержится между плоскостями и и каждою параллельною им плоскостью, отвечающей фиксированному значению , пересекается по некоторой фигуре, имеющей площадь; через обозначим ее проекцию на плоскость (рис. 2). Тогда

(8*)

в предположении существования тройного и двойного интегралов. Это — аналог формулы.

Пусть, далее, тело представляет собой «цилиндрический брус», ограниченный снизу и сверху, соответственно, поверхностями

проектирующимися на плоскость в некоторую фигуру , ограниченную кривой с площадью 0; с боков тело ограничено цилиндрической поверхностью с образующими, параллельными оси , и с кривой в роли направляющей. Тогда аналогично формуле имеем

при этом предполагается существование тройного интеграла и простого — внутреннего— интеграла справа.

Если область представляет собой криволинейную трапецию, ограниченную двумя кривыми (рис.14) и и прямыми , , то тело подходит под оба типа, рассмотренных выше. Заменяя двойной интеграл—то ли в формуле, то ли в формуле —повторным, получим

.

Эта формула обобщает формулу.

Как и в простейшем случае, который был рассмотрен в предыдущем п°, и здесь непрерывность функции обеспечивает приложимость всех формул и им подобных, получающихся из них перестановкой переменных .

Рис. 3.

Новые статьи:

Проблема межпредметных связей педагогики современного периода
Современное состояние научного естествознания предстает как сложнейшая система наук, в составе которой функционирует множество научных дисциплин. Большинство из них непрерывно взаимодействуют, имея общие объекты научного познания. Взаимное проникновение наук отражает объективную диалектику природы. ...

Температура. Измерение температуры
тепловой явление лабораторный урок Температура (от лат. temperatura — надлежащее смешение, нормальное состояние) — скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамичес ...

Анализ создания инновационных компаний при вузах
Начиная с 2010 г., в нашей стране осуществляется целенаправленная политика развития инновационной инфраструктуры вузов. 9 апреля 2010 г. Правительство Российской Федерации утвердило постановление № 219 «О государственной поддержке развития инновационной инфраструктуры в федеральных образовательных ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru