Общий случаи интеграла, распространенного на тело
любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция
определена в области
,то вместо нее следует лишь ввести, функцию
, определенную в объемлющем
прямоугольном параллелепипеде
, полагая
Этим путем и получаются все приводимые ниже формулы.
Рис. 2.
Остановимся на случаях, представляющих наибольший интерес. Пусть тело
содержится между плоскостями
и
и каждою параллельною им плоскостью, отвечающей фиксированному значению
, пересекается по некоторой фигуре, имеющей площадь; через
обозначим ее проекцию на плоскость
(рис. 2). Тогда
(8*)
в предположении существования тройного и двойного интегралов. Это — аналог формулы.
Пусть, далее, тело
представляет собой «цилиндрический брус», ограниченный снизу и сверху, соответственно, поверхностями
проектирующимися на плоскость
в некоторую фигуру
, ограниченную кривой
с площадью 0; с боков тело
ограничено цилиндрической поверхностью с образующими, параллельными оси
, и с кривой
в роли направляющей. Тогда аналогично формуле имеем
при этом предполагается существование тройного интеграла и простого — внутреннего— интеграла справа.
Если область
представляет собой криволинейную трапецию, ограниченную двумя кривыми (рис.14)
и
и прямыми
,
, то тело
подходит под оба типа, рассмотренных выше. Заменяя двойной интеграл—то ли в формуле, то ли в формуле —повторным, получим
.
Эта формула обобщает формулу.
Как и в простейшем случае, который был рассмотрен в предыдущем п°, и здесь непрерывность функции
обеспечивает приложимость всех формул и им подобных, получающихся из них перестановкой переменных
.
Рис. 3.
Музыкальность и музыкальные способности
Рассмотрение музыкальных способностей неразрывно связано с анализом проблемы общих способностей человека. Специальные способности, к которым относятся способности музыкальные, становятся созидательными лишь благодаря тому, что в их структуре проявляется и усиливается действие общих способностей. А ...
Понятие «натуральное число», свойства натуральных чисел
Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами Существует большое количество определений поняти ...
Пути формирования у младших школьников ценностного отношения
к здоровью
По выражению академика Н.М. Амосова «…чтобы быть здоровым, нужны собственные усилия, постоянные и значительные. Заменить их ничем нельзя». Указать нужное направление «собственным усилиям» призвана молодая быстро развивающаяся наука валеология». Валеология (от латинского valeo - «здравствовать», быт ...