При построении общего определения нового интегрального образования тройного интеграла - основную роль играет понятие объема тела.
С понятием объема уже знакомы. Условие существования объема для данного тела заключается в том, чтобы ограничивающая его поверхность имела объем 0 . Только такие поверхности будем рассматривать, так, что существование объемов во всех нужных нам случаях тем самым обеспечивается. В частности, в состав указанного класса поверхностей входят кусочно-гладкие поверхности.
Пусть теперь в некоторой пространственной области (V) задана функция f(x, y, z). Разобьем эту область с помощью сети поверхностей на конечное число частей (V1), (V2), … , (Vn), имеющих соответственно объемы V1, V2, … ,Vn. В пределах i-го элемента возьмем произвольную точку , значение функции в этой точке
умножим на объем Vi и составим интегральную сумму
Vi.
Конечный предел I этой суммы, при стремлении к нулю наибольшего из диаметров всех областей (Vi) и называется тройным интегралом функции f(x, y, z) в области (V). Он обозначается символом
.
Конечный предел подобного вида может существовать только для ограниченной функции. Для такой функции вводятся, кроме интегральной суммы σ, еще суммы Дарбу:
,
,
где ,
.
Обычным путем устанавливается, что для существования интеграла необходимо и достаточно условие
или
,
где есть колебание функции f в области
. Заметим, что при существовании интеграла обе суммы s, S также имеют его своим пределом.
Отсюда непосредственно следует, что всякая непрерывная функция f интегрируема.
Можно несколько расширить эти условия, а именно: интегрируема всякая ограниченная функция, все разрывы которой лежат на конечном числе поверхностей с объемом 0.
Доказательство этого утверждения основано на следующей лемме:
Если область (V), содержащая поверхность (S) с объемом 0, разложена на элементарные области, то сумма объемов тех из них, которые задевают поверхность (S), стремиться к нулю вместе с диаметрами всех частичных областей.
Формы организации обучения старших дошкольников
Организация эффективного обучения возможна только при знании и умелом использовании разнообразных форм организации педагогического процесса. Понятие «форма организации обучения», или, как еще говорят, организационная форма обучения, имеет иной смысл. Слово «forma» в переводе с латинского означает н ...
Роль дошкольно-образовательного учреждения в развитии ребенка
Дошкольно-образовательное учреждение, являясь первой ступенью образования, выполняет множество функций. Среди задач, стоящих перед детским садом, главной является всесторонне развитие личности ребенка. На занятиях, предусмотренных программой обучения и воспитания в детском саду, ребенок получает сп ...
Цели и задачи воспитания
у дошкольников экологической культуры
Создание нового отношения человека к природе — задача не только социально-экономическая и техническая, но и нравственная. Она вытекает из необходимости воспитывать экологическую культуру, формировать новое отношение к природе, основанное на неразрывной связи человека с природой. Одним из средств ре ...